
Tearing growth rate of a viscoresistive Harris sheet subject to flow

J. De Jonghe* and R. Keppens

Centre for mathematical Plasma-Astrophysics, KU Leuven, Leuven, Belgium

Abstract. The MHD spectroscopic Legolas code is applied to a viscoresistive Har-

ris current sheet for varying values of resistivity and viscosity, with and without the

presence of shear flow. It is shown that whether the background flow has a stabilising

or destabilising effect on the tearing instability depends on the specific combination

of resistivity and viscosity.

Introduction

Due to its prevalence in a large variety of explosive and impactful phenomena, like coronal

mass ejections, the solar wind-magnetopause interaction, and confinement disruption in fusion

devices, magnetic reconnection has become crucial to our understanding of plasma behaviour.

In this process of breaking and reconfiguring magnetic field lines, the alteration of the magnetic

topology results in a conversion of magnetic to thermal and kinetic energy. However, reconnec-

tion is regularly observed to occur much faster than the original Sweet-Parker model (7;8) can

account for on its own. Though it is not the only way of triggering reconnection, we here fo-

cus on the resistive tearing instability, first described by Furth, Killeen, and Rosenbluth (4), and

analyse how its growth rate depends on the resistivity and viscosity in a current sheet.

Harris current sheet with shear flow

In this study, we adopt the Harris current sheet setup of Li and Ma (5), which features a

reversal of the magnetic field BBB0 across the x = 0 plane, without guide field,

BBB0(x) = B0 tanh
(

x
aB

)
êeey, (1)

in a plasma of uniform density ρ0 = 1. The temperature T0 is set such that the system is in force

balance, i.e. satisfying
∂

∂x

(
ρ0T0(x)+

1
2

BBB2
0(x)

)
= 0. (2)

In case a flow profile is included below, this configuration is supplemented with a shear flow

profile vvv0 of the same form as the magnetic field,

vvv0(x) = v0 tanh
(

x
av

)
êeey. (3)

For all cases considered here, we set B0 = 1, aB = 1, v0 = 0.2, and av = 0.8.
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Stability analysis with the Legolas code

This flow-sheared Harris sheet is then analysed with the spectroscopic Legolas code (2;3)

(v2.0.5, see https://legolas.science), which solves the linearised, compressible MHD

equations for all frequencies ω and associated perturbations in density, velocity, temperature,

and magnetic field of the form

f1(xxx, t) = f̂1(x) exp [i(k2y+ k3z−ωt)] (4)

for a specified wave vector kkk = k2 êeey+k3 êeez. Here, we choose k2 = 0.25 and k3 = 0, unless noted

otherwise. In this analysis, we solve the system in the interval x ∈ [−15,15] such that the effect

of the perfectly conducting boundary conditions is negligible (satisfying |xwall|≳ 10aB) (6). The

Gaussian spacing function

f (x) = p1 − (p1 − p3)exp
[
−(x− p2)

2

2p4

]
(5)

is used to obtain a higher grid point density at the center of the interval, with values p1 = 0.75,

p2 = 0, p3 = 0.001, and p4 = 2.5, and we adopt the QR-cholesky solver.

Results and discussion

For this Harris sheet configuration and the aforementioned Legolas-specific parameters, we

now vary either the resistivity η , the dynamic viscosity µ , or the wave number k2, whilst the

other two remain fixed. Despite the presence of flow shear, the only unstable mode in the spec-

trum is the resistive tearing instability since the speed v0 is significantly sub-Alfvénic every-

where. Additionally, the flow profile is an odd function with respect to the location of the mag-

netic nullplane (x = 0), such that the tearing instability remains purely imaginary in the case

with flow. The tearing growth rates are shown in Fig. 1(a-c) for the flowless case and in Fig.

1(d-f) for the case with flow profile (3). Lastly, Fig. 1(g-i) shows the difference in growth rate

between the middle and left columns of Fig. 1.

As expected, panels (a, b) and (d, e) confirm that stronger viscosity results in stronger damp-

ing for a certain resistivity. Similarly, a higher resistivity value corresponds to a larger growth

rate, except for extremely high resistivities, where the growth rate falls off again in panels (a)

and (d), contrary to the literature’s analytic scaling laws for incompressible plasmas (4;1). Finally,

panels (c) and (f) show that the wave number of maximal growth varies slightly depending on

the resistivity and viscosity, but stays relatively close to the value k2 = 0.25 used in the other

panels.

To study the effect of flow in the presence of resistivity and viscosity, we look at the right col-

umn. Firstly, flow does not appear to alter the wave number of maximal growth significantly, and
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Figure 1: On the left (a-c), the tearing growth rate in the absence of flow. In the middle (d-

f), a background flow with v0 = 0.2 and av = 0.8 is present. On the right (g-i), the difference

Im(ωflow)− Im(ωno flow) between the middle and left columns. (a, d) Growth rate as a function

of η for given values of µ and kkk = 0.25 êeey. (b, e) Growth rate as a function of µ for given values

of η and kkk = 0.25 êeey. (c, f) Growth rate as a function of kkk = k2 êeey for A) η = 10−2 and µ = 10−2;

B) η = 10−3 and µ = 10−2; C) η = 10−2 and µ = 10−3; D) η = 2×10−3 and µ = 2×10−3.



panel (i) reveals that larger growth rates are damped more by the flow shear, though the mod-

ification is less than 2%. Secondly, panels (g) and (h) illustrate both the stabilising and desta-

bilising influence of the flow, depending on the physical parameters. Here, panel (h) features

a 4− 5% growth rate damping for small viscosity values, but a sizeable growth rate increase

in the strongly viscous regime. Lastly, panel (g) demonstrates that in strongly viscous media

the shear flow will further destabilise the medium whilst it has a mostly stabilising influence in

weakly viscous or inviscid media.

Conclusion

In these proceedings we evaluated the interplay between resistivity, dynamic viscosity, and

shear flow in a Harris current sheet, and the effect on its tearing instability. In conclusion, the

viscosity is found to damp the tearing instability, with stronger viscosity resulting in a stronger

suppression. For weakly viscous media, the introduction of shear flow further suppresses the

instability. However, in the highly viscous regime the shear flow counteracts the viscosity’s

effect, and results in a larger growth rate again.
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