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Velocity profile parameter variation
• Fixed parameters.

• Varied parameters.
• Observations.

• Both stabilising and destabilising.
• If the velocity transition width is larger than the Harris sheet width, the flow works mostly

destabilising.
• The transition from destabilising to stabilising influence depends on both the velocity

transition width and the maximal speed.
• When the velocity transition width is smaller than the Harris sheet width and the maximal

speed approaches the Alfvén speed, the Kelvin-Helmholtz instability becomes the most
unstable mode in the system (top right corner of figure 5). It is an order of magnitude larger
than the tearing mode.

FIGURE 5: Visualisation of
the relative growth rate

of the most unstable
mode for combinations
of maximal flow speed
(x-axis) and flow
transition width (y-axis).
Different colour maps are
used for damped (< 0)
and destabilised (> 0)
regions. Red dotted lines
denote the equivalent B-
parameters. (20x20 Legolas
runs of 501 grid points
each.)
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Wavenumber variation
• Fixed parameters.
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FIGURE 4: Tearing growth rate as a function of the
wavenumber k for different maximal velocities.

• Varied parameters.
• Observations.
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• Both stabilising and destabilising.
• Peak apparently around fixed wavenumber.
• Transition from stabilising to destabilising k value is

velocity dependent.

HARRIS SHEET

• Geometry. Cartesian slab [-15, 15].

• Equilibrium configuration. Constant density, hyperbolic tangent profile for both magnetic field and
velocity, and temperature satisfying the force-balance equation
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• Wavevector parallel to the velocity.
• Specifics.

FIGURE 3: Relative tearing growth rate as a function of the
resistivity for various flow speeds.

Resistivity variation
• Fixed parameters.
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02• Varied parameters.

• Observations.
• Whether a background flow of given speed exerts a

stabilising or destabilising influence on the tearing
mode depends strongly on the resistivity.

Density variation
• Fixed parameters.
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FIGURE 2: Comparison of density variation in (A) the absence of
flow and (B) presence of flow.
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• Growth rate decreases with increasing density.
• The presence of a background flow introduces a new

density dependence in the growth rate where the tearing
mode is quickly and fully damped above a threshold
density.
1. Small density: largely unaltered
2. Intermediate density: strong damping
3. Large density: fully damped

• Varied parameters.
• Observations.

(Note: for both depicted cases, the plasma-β is much larger
than 1 at the point of strong damping.)

FIGURE 1: Relative tearing growth rate as a function of
the velocity gradient for different β-values.
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(Note: we only consider sub-Alfvénic speeds.)
• Varied parameters.
• Observations.

Velocity variation
• Fixed parameters.

• Both stabilising and destabilising.
• β-independent dropoff.

• Specifics.
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• Wavevector parallel to the velocity.
• Magnetic field rotation between half a rotation and a full rotation (π < α < 2π).

MAGNETIC FIELD ROTATION

• Geometry. Cartesian slab [-0.5, 0.5].

• Equilibrium configuration. Constant density and temperature, rotating magnetic field, and linear
velocity profile
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INTRODUCTION

• Motivation. Resistive tearing instability can trigger magnetic reconnection. This may lead to eruptive
events like solar flares and disruption of plasma confinement in tokamak devices.

• Observation. Many physical plasmas are subject to some background flow. This flow affects the
tearing mode growth rate.

• Research. Study of 2 magnetic field configurations (a rotating magnetic field of fixed size and a
Harris sheet) paired with different background velocity profiles, explored parametrically with the
(open-source) linear 1D magnetohydrodynamic (MHD) spectroscopy code Legolas [1, 2].

MAGNETOHYDRODYNAMIC SPECTROSCOPY WITH LEGOLAS

• Input. 1D stratified plasma in Cartesian or cylindrical geometry.

• Output. Eigenmodes and corresponding eigenfunctions of the linearised MHD equations (after
3D Fourier analysis)
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